<code id="vmyos"></code>
      <dl id="vmyos"><tr id="vmyos"></tr></dl><var id="vmyos"><ins id="vmyos"><option id="vmyos"></option></ins></var>
      <address id="vmyos"><ins id="vmyos"></ins></address><acronym id="vmyos"><tr id="vmyos"></tr></acronym>
        <cite id="vmyos"><tr id="vmyos"><optgroup id="vmyos"></optgroup></tr></cite>
        首頁 >> 科研進展
        Xiong, Hong-chun, Zuo, Yuan-mei等Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping
        發布日期:2013-04-15瀏覽次數: 字號:[ ]

        題目: Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping.

        作者:Xiong, Hong-chun, Shen, Hong-yun, Zhang ,li-xia, Zhang, Yan-xia, Guo,Xiao-tong, Wang, Pern-fei, Duan, Pen-gen,ji, Chun-qiao, Zhong, li-na, Zhang, Fuo-suo and Zuo, Yuan-mei*.

        出版物: J Proteomics. 2013.78-447-460.


        Intercropping is an important and sustainable cropping practice in agroecosystems. Peanut/maizeintercropping is known to improve the iron (Fe) content of peanuts in calcareous soils. In this study, a proteomic approach was used to uncover the ecological significance of peanut/maizeintercropping at the molecular level. We demonstrate that photosynthesis-related proteins accumulated in intercropped peanut leaves, suggesting that the intercropped peanuts had a stronger photosynthetic efficiency. Moreover, stress-response proteins displayed elevated expression levels in both peanut and maize in a monocropping system. This indicated that intercropping contributes to resistance to stress conditions. Allene oxide synthase and 12-oxo-phytodienoic acid reductase, two key enzymes in jasmonate (JA) biosynthesis, increased in abundance in the maize roots of the intercropping system, consistent with the upregulation of JA-induced proteins shown by microarray analysis. These results imply that JA may act as a signaling molecule, playing an important role in intercropping through rhizosphere interaction. This study suggests that peanut/maizeintercropping results in high Fe availability in the rhizosphere, leading to variation in the proteins related to carbon and nitrogen metabolism. The advantages of intercropping systems may improve the ecological adaptation of plants to environmental stress.

        Copyright © 2012 Elsevier B.V. All rights reserved.

        【打印本頁】 【關閉本頁】